Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(22): e0121922, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286524

RESUMO

Acetylene (C2H2) is a molecule rarely found in nature, with very few known natural sources, but acetylenotrophic microorganisms can use acetylene as their primary carbon and energy source. As of 2018 there were 15 known strains of aerobic and anaerobic acetylenotrophs; however, we hypothesize there may yet be unrecognized diversity of acetylenotrophs in nature. This study expands the known diversity of acetylenotrophs by isolating the aerobic acetylenotroph, Bradyrhizobium sp. strain I71, from trichloroethylene (TCE)-contaminated soils. Strain I71 is a member of the class Alphaproteobacteria and exhibits acetylenotrophic and diazotrophic activities, the only two enzymatic reactions known to transform acetylene. This unique capability in the isolated strain may increase the genus' economic impact beyond agriculture as acetylenotrophy is closely linked to bioremediation of chlorinated contaminants. Computational analyses indicate that the Bradyrhizobium sp. strain I71 genome contains 522 unique genes compared to close relatives. Moreover, applying a novel hidden Markov model of known acetylene hydratase (AH) enzymes identified a putative AH enzyme. Protein annotation with I-TASSER software predicted the AH from the microbe Syntrophotalea acetylenica as the closest structural and functional analog. Furthermore, the putative AH was flanked by horizontal gene transfer (HGT) elements, like that of AH in anaerobic acetylenotrophs, suggesting an unknown source of acetylene or acetylenic substrate in the environment that is selecting for the presence of AH. IMPORTANCE The isolation of Bradyrhizobium strain I71 expands the distribution of acetylene-consuming microbes to include a group of economically important microorganisms. Members of Bradyrhizobium are well studied for their abilities to improve plant health and increase crop yields by providing bioavailable nitrogen. Additionally, acetylene-consuming microbes have been shown to work in tandem with other microbes to degrade soil contaminants. Based on genome, cultivation, and protein prediction analysis, the ability to consume acetylene is likely not widespread within the genus Bradyrhizobium. These findings suggest that the suite of phenotypic capabilities of strain I71 may be unique and make it a good candidate for further study in several research avenues.


Assuntos
Bradyrhizobium , Tricloroetileno , Tricloroetileno/metabolismo , Fixação de Nitrogênio/genética , Solo/química , Acetileno/metabolismo , Filogenia , Simbiose , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , DNA Bacteriano/genética , Análise de Sequência de DNA
2.
Pathogens ; 11(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35745532

RESUMO

Campylobacter jejuni is commonly isolated on selective media following incubation at 37 °C or 42 °C, but the impact of these temperatures on genome variation remains unclear. Previously, Campylobacter selective enrichments from the feces of steers before and after ceftiofur treatment were plated on selective agar media and incubated at either 37 °C or 42 °C. Here, we analyzed the whole genome sequence of C. jejuni strains of the same multilocus sequence typing (MLST)-based sequence type (ST) and isolated from the same sample upon incubation at both temperatures. Four such strain pairs (one ST8221 and three ST8567) were analyzed using core genome and whole genome MLST (cgMLST, wgMLST). Among the 1970 wgMLST loci, 7-25 varied within each pair. In all but one of the pairs more (1.7-8.5 fold) new alleles were found at 42 °C. Most frameshift, nonsense, or start-loss mutations were also found at 42 °C. Variable loci CAMP0575, CAMP0912, and CAMP0913 in both STs may regularly respond to different temperatures. Furthermore, frameshifts in four variable loci in ST8567 occurred at multiple time points, suggesting a persistent impact of temperature. These findings suggest that the temperature of isolation may impact the sequence of several loci in C. jejuni from cattle.

3.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667109

RESUMO

Acetylene (C2H2) is a trace constituent of the present Earth's oxidizing atmosphere, reflecting a mixture of terrestrial and marine emissions from anthropogenic, biomass-burning, and unidentified biogenic sources. Fermentation of acetylene was serendipitously discovered during C2H2 block assays of N2O reductase, and Pelobacter acetylenicus was shown to grow on C2H2 via acetylene hydratase (AH). AH is a W-containing, catabolic, low-redox-potential enzyme that, unlike nitrogenase (N2ase), is specific for acetylene. Acetylene fermentation is a rare metabolic process that is well characterized only in P. acetylenicus DSM3246 and DSM3247 and Pelobacter sp. strain SFB93. To better understand the genetic controls for AH activity, we sequenced the genomes of the three acetylene-fermenting Pelobacter strains. Genome assembly and annotation produced three novel genomes containing gene sequences for AH, with two copies being present in SFB93. In addition, gene sequences for all five compulsory genes for iron-molybdenum N2ase were also present in the three genomes, indicating the cooccurrence of two acetylene transformation pathways. Nitrogen fixation growth assays showed that DSM3426 could ferment acetylene in the absence of ammonium, but no ethylene was produced. However, SFB93 degraded acetylene and, in the absence of ammonium, produced ethylene, indicating an active N2ase. Diazotrophic growth was observed under N2 but not in experimental controls incubated under argon. SFB93 exhibits acetylene fermentation and nitrogen fixation, the only known biochemical mechanisms for acetylene transformation. Our results indicate complex interactions between N2ase and AH and suggest novel evolutionary pathways for these relic enzymes from early Earth to modern days.IMPORTANCE Here we show that a single Pelobacter strain can grow via acetylene fermentation and carry out nitrogen fixation, using the only two enzymes known to transform acetylene. These findings provide new insights into acetylene transformations and adaptations for nutrient (C and N) and energy acquisition by microorganisms. Enhanced understanding of acetylene transformations (i.e., extent, occurrence, and rates) in modern environments is important for the use of acetylene as a potential biomarker for extraterrestrial life and for degradation of anthropogenic contaminants.


Assuntos
Acetileno/metabolismo , Deltaproteobacteria/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deltaproteobacteria/enzimologia , Deltaproteobacteria/genética , Deltaproteobacteria/crescimento & desenvolvimento , Fermentação , Genoma Bacteriano , Hidroliases/genética , Hidroliases/metabolismo , Molibdênio/metabolismo , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Filogenia
4.
PLoS One ; 10(9): e0137325, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26378443

RESUMO

The systematic relationships and phylogeography of Cerion incanum, the only species of Cerion native to the Florida Keys, are reviewed based on partial sequences of the mitochondrial COI and 16S genes derived from 18 populations spanning the range of this species and including the type localities of all four described subspecies. Our samples included specimens of Cerion casablancae, a species introduced to Indian Key in 1912, and a population of C. incanum x C. casablancae hybrids descended from a population of C. casablancae introduced onto Bahia Honda Key in the same year. Molecular data did not support the partition of C. incanum into subspecies, nor could populations be apportioned reliably into subspecies based on morphological features used to define the subspecies. Phylogenetic analyses affirmed the derived relationship of C. incanum relative to other cerionids, and indicated a Bahamian origin for the Cerion fauna of southern Florida. Relationships among the populations throughout the Keys indicate that the northernmost populations, closest to the Tomeu paleoislands that had been inhabited by Cerion petuchi during the Calabrian Pleistocene, are the oldest. The range of Cerion incanum expanded as the archipelago that is the Florida Keys was formed since the lower Tarantian Pleistocene by extension from the northeast to the southwest, with new islands populated as they were formed. The faunas of the High Coral Keys in the northeast and the Oölite Keys in the southwest, both with large islands that host multiple discontinuous populations of Cerion, are each composed of well supported clades that are characterized by distinctive haplotypes. In contrast, the fauna of the intervening Low Coral Keys consist of a heterogeneous series of populations, some with haplotypes derived from the High Coral Keys, others from the Oölite Keys. Individuals from the C. incanum x C. casablancae hybrid population inhabiting the southeastern coast of Bahia Honda Key were readily segregated based on their mitogenome lineage, grouping either with C. incanum or with C. casablancae from Indian Key. Hybrids with C. casablancae mitogenomes had haplotypes that were more divergent from their parent mitogenome than were hybrids with C. incanum mitogenomes.


Assuntos
DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Gastrópodes/classificação , Gastrópodes/genética , Animais , Sequência de Bases , Evolução Molecular , Florida , Variação Genética , Mitocôndrias/genética , Filogenia , Filogeografia , Subunidades Proteicas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...